
Passage: A Parallel Sampler Generator for
Hierarchical Bayesian Modeling

Chad Scherrer
Independent Consultant

Yakima, WA
chad.scherrer@gmail.com

Iavor Diatchki
Galois, Inc.

Portland, OR
diatchki@galois.com

Levent Erkök
Intel

Portland, OR
erkokl@gmail.com

Matthew Sottile
Galois, Inc.

Portland, OR
mjsottile@gmail.com

Abstract

We introduce Passage, an EDSL (Embedded Domain Specific Language) for hi-
erarchical Bayesian modeling. Passage is hosted by the functional programming
language Haskell, and inherits Haskell’s infrastructure for rapid code develop-
ment and higher-order functions. We expect Passage to be interesting to both
casual users interested in Bayesian modeling, and also to researchers in the field
who want to explore computational aspects of statistical modeling. In particular,
our framework allows easy manipulation of the model and the generated code to
explore alternative execution strategies, including targets that can make use of the
heavy parallelism as afforded by many modern machines. Passage is open-source
software, available for free download.

1 Introduction

Passage is a PArallel SAmpler GEnerator; it builds parallel C/OpenMP code from a high-level model
specification and observed data. Passage is implemented as a EDSL (Embedded Domain Specific
Language) hosted by the Haskell language. Passage programs are therefore simply Haskell programs
that call some Passage-specific language constructs.

In particular, Passage makes it easy to describe hierarchical Bayesian models in terms of higher-
order abstractions. Given a model, Passage performs symbolic calculation to find a form of the
log-density suitable for sampling. It then calculates a coloring of the dependency graph, and uses
this to construct parallel sampling code using C/OpenMP.

Due to space limitations, we will assume a working understanding of Bayesian analysis and the
Haskell programming language.

2 A simple example 1 simpleModel n = do
mu ← improperUniform

3 tau ← improperScale
x ← iid n (normal mu tau)

5 return (mu, tau , x)

Figure 1: Passage code for a simple example.

Suppose we’d like to model a set of n observations as
iid normal. Figure 1 gives a function simpleModel
that takes a single parameter n corresponding to the
number of observations. Lines 2 and 3 specify im-
proper prior distributions for both the mean and the
precision [We use the term “improper scale” to indicate that log τ is given an improper uniform
prior], and Line 4 gives the distribution for each component of x. Finally, Line 5 returns the triple
(mu,tau,x), allowing any of these variables to be observed (bound to a known constant value) or
monitored (output during sampling).

1



1 sim x0 = genSimulator "simpleExample" $ do
setThreadNum 2

3 let n = length x0
(mu, tau , x) ← runModel (simpleModel n)

5 zipWithM_ observe x x0
monitor "mean" mu

7 monitor "precision" tau

Figure 2: The simulation driver for our simple example.

With the model specified, we can
build the simulation driver, which
indicates which variables we would
like to monitor, as well as those
for which we have observed val-
ues; see Figure 2. Given a list
of doubles x0, evaluation of sim x0
will now result in creation of a
simpleExample directory containing
C/OpenMP sampler code. This
sampler performs parallel Gibbs sampling (here using 2 threads) from the posterior distribution.

3 Programming abstractions 1 markovChain n d0 next = mc n d0
where

3 mc 0 _ = return []
mc n distr = do

5 x ← distr
xs ← mc (n-1) (next x)

7 return (x:xs)

Figure 3: A higher-order Markov chain function.

Haskell is well-suited to expressing higher-
order abstractions; Passage takes advantage
of this to allow higher-order specification of
Bayesian models. For example, a Markov chain
can be specified by a length n, an initial distri-
bution d0, and a function next that takes a value
from the jth point in the chain and returns a dis-
tribution at the (j + 1)st. This is easily expressed in Passage, as shown in Figure 3.

1 randomWalk n = do
tau ← improperScale

3 x ← markovChain n (normal 0 1)
(λxk → normal xk tau)

5 return (tau , x)

Figure 4: Using the markovChain function
to define a random walk.

Now given the markovChain function, we can
use it to define other models that are given in
these terms. For example, consider a simple
random walk consisting of a discrete stochas-
tic process (xk), where

x0 ∼ N (0, 1)

xk ∼ N (xk−1, τ) .

The Passage implementation is shown in Figure 4. Note that there need not be any distinction
whether the markovChain function referred to is built-in or user-defined.

4 Building distributions 1 logisticBernoulli r = makeDist (discrete 1) f
where

3 f x = r ∗ x - r - log (1 + exp (-r))

Figure 5: A reparameterized Bernoulli distribution.

Passage comes with a wide va-
riety of predefined distributions,
both discrete and continuous. In
addition, this can be easily extended using the makeDist function, which requires specification of
a support (discrete with some max, nat, real, or posReal) and a log-density function. For ex-
ample, Figure 5 gives a simple example of a Bernoulli distribution, parametrized by the logit of the
probability of success.

1 studentT df = do
v ← chiSquare df

3 normal 0 v

5 symDirichlet n alpha = do
gs ← iid n (gamma alpha 1)

7 return [g / sum gs | g ← gs]

Figure 6: Student’s t, and a symmetric
Dirichlet.

Alternatively, Passage allows distributions to be de-
fined in terms of auxiliary variables. Figure 6 shows
how this approach can be used to easily define Stu-
dent’s t distribution as a mixture of normals, and
a symmetric Dirichlet distribution as a normalized
vector of gammas.

5 Symbolic manipulations

Introduction to the model of the relation x ∼ N (µ, τ) corresponds to an increase in the joint log-
density in the amount of

` = 1
2 log τ −

1
2τx

2 + τµx− 1
2τµ

2 .

2



Internally, Passage transforms this into a set of functions, each of which is a sum of products of
pairs:

`x =
(
x2

) (
1
2τ

)
+ (x) (τµ)

`µ = (µ) (τx) +
(
µ2

) (
− 1

2τ
)

`τ = (log τ)
(
1
2

)
+ (τ)

(
− 1

2x
2 + µx− 1

2µ
2
)

Note that in each pair, the first factor is a function of the particular variable of interest, and the second
factor is constant relative to this variable. Successive variable specifications lead to aggregation of
similar terms in all such functions. Thus similar terms are collected easily and effectively, yielding
an efficient functional representation fit for a variety of sampling approaches.

Finally, note that values that are constant relative to the variable of interest are discarded; we work
with relative values only and do not calculate normalization factors for any distribution.

6 Parallel thread scheduling

Thread 1 Thread 2

write

Figure 7: Thread schedul-
ing using graph coloring.

In addition to yielding a convenient functional form, the above anal-
ysis of the joint log-density yields an easy way to arrive at the de-
pendency graph mapping each node to its Markov blanket. Sampling
a given variable requires reading values at the corresponding node’s
neighbors, and writing over the value at node for the given variable.
Thus in a parallel context, adjacent nodes cannot be sampled simul-
taneously, and the dependency graph corresponds to an interference
graph in the usual compiler sense. Graph coloring provides a guide
we can use to sample nodes in parallel when possible, while avoiding
sampling dependent nodes simultaneously.

Figure 7 shows a simple example. First, we color the nodes of the
dependency graph. Next, we construct the desired number of OpenMP
threads, with a number of barriers one greater than the number of
colors (to force synchronization before each write). We then populate
this structure with the sampler code from the various nodes.

7 Conclusion and Future Work

We see great promise in Passage for its approach to abstractions within Haskell, symbolic processing
of the joint log-density, and automatic parallel code generation. But Passage is still very young, and
there is clearly lots of work still ahead. A number of available optimizations have not yet been
implemented, including marginalization and conjugacy. Also, to this point Passage is inherently
univariate, with multivariate distributions expressed simply as a joint distribuition, but without any
fundamental distinction.

We hope to continue to improve Passage in these ways and others, to provide a laboratory for ex-
ploring new ideas in modeling and parallel sampling.

Passage is available for free download from http://hackage.haskell.org/package/passage.

Acknowledgments

The authors are grateful to DOE’s ASCR Applied Mathematics Program for funding, to Andrew
Gelman for arranging subcontract funding for Galois, and to Pacific Northwest National Laboratory
for releasing Passage into the public domain.

Special thanks also go to Andy Adams-Moran, Bob Carpenter, Aleks Jakulin, Don Stewart, and Rob
Zinkov for helpful discussions and planning.

3



References

[1] Simon Peyton Jones, editor. Haskell 98 Language and Libraries. Cambridge Press, 2003.
[2] David J. Lunn, Andrew Thomas, Nicky Best, and David Spiegelhalter. WinBUGS: A bayesian

modelling framework: Concepts, structure, and extensibility. Statistics and Computing, 10:325–
337, October 2000.

[3] Martyn Plummer. JAGS: A program for analysis of bayesian graphical models using Gibbs
sampling, 2003.

[4] Hal Daume. HBC: Hierarchical Bayes Compiler. http://www.umiacs.umd.edu/~hal/HBC/,
2008.

[5] George Marsaglia. http://programmingpraxis.com/2010/10/05/
george-marsaglias-random-number-generators/, 2010.

[6] Radford Neal. Slice sampling. Annals of Statistics, 31:705–767, 2000.
[7] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP: Portable Shared

Memory Parallel Programming (Scientific and Engineering Computation). The MIT Press,
2007.

[8] Paul Hudak. Modular domain specific languages and tools. In P. Devanbu and J. Poulin, ed-
itors, Proceedings: Fifth International Conference on Software Reuse, pages 134–142. IEEE
Computer Society Press, 1998.

4


