
GraPPa: Spanning the Expressivity vs. Efficiency Continuum ∗

Edwin Westbrook Chad Scherrer Nathan Collins Eric Mertens
Galois Inc.

{westbrook,chad.scherrer,conathan,emertens}@galois.com

1. Introduction
Probabilistic Programming Languages (PPLs) are a powerful ap-
proach to enable users without significant machine learning exper-
tise to apply machine learning algorithms and techniques to prob-
lems in their domains of interest. PPLs facilitate the separation of
a particular machine learning problem — the “what” — from the
“how” of the particular algorithms or techniques needed to solve
the problem. This separation allows domain experts, or users with
expertise in the specifics of the problem being solved, to focus on
describing the important details of a problem, while the solution
can be written by someone who has expertise with probability and
machine learning.

A machine learning problem is described in a PPL by providing
a set of data along with a generative model that hypothesizes how
the data was created. A generative model represents a joint distri-
bution over a set of random variables, some corresponding to the
data and others to unobserved “model parameters”. To make gener-
ative models easier to write and understand, they models are written
as random processes that read from random variables in sequence.
A machine learning problem is then solved by applying inference
methods. Inference methods are algorithms that try to answer ques-
tions related to how a set of data was generated by a given model,
such as how likely it was that the given model generated the given
data or what values are likely for the unobserved model parameters.

An important trade-off in the design of PPLs is between the
expressiveness of the language of generative models and the power
and efficiency of the inference methods. On one end of the spec-
trum are languages like Anglican (Wood et al. 2014) and the
Haskell monad-bayes package (Ścibior et al. 2015), where genera-
tive models can contain any sort of random variable, representing
any arbitrary random process. This generality provides a very ex-
pressive language for generative models, but, because very little
can be known a priori about the arbitrary random variables in these
models, they must be treated as “black boxes”, thereby limiting the
set of inference methods that can be used. On the other end of the
spectrum, the Stan language (Carpenter et al. 2016) restricts mod-
els to range over a fixed, finite set of continuous variables, which
allows efficient specialization to hybrid Monte-Carlo algorithms
like Hamiltonian sampling and No U-Turn sampling (NUTS).

This trade-off between expressiveness and efficiency requires
users to choose a different language, and associated toolchain, de-
pending on the particular problem they are trying to solve. Addi-
tionally, even knowing where a particular problem lies on the con-
tinuum between expressiveness and efficiency, or where it is likely
to lie as the problem evolves, can require a non-trivial amount of
expertise and understanding of machine learning, which violates
the original promise of separating the “what” and the “how.”

In this talk, we will describe ongoing work on GraPPa, the
Galois Probabilistic Programming language, that addresses this

∗ This work supported by DARPA (contract number FA8750-14-C-0003)

concern. GraPPa, which is implemented as an embedded domain-
specific language (EDSL) in Haskell, is a single PPL that allows
users to choose where each model lies on the continuum between
expressiveness and efficiency, simply by choosing what sorts of
random variables to use in a model. The key technical idea that
enables this approach is an encoding, in the type of each model,
of the set of random variables and associated distributions used in
that model. This approach is compositional, meaning that a model
with random variables in one set can be combined with a model
with random variables in another set, and the type of the resulting
model will contain the union of the two sets.

2. Generative Models in GraPPa
Generative models are defined in GraPPa using a variant of the
free monad construction, where a model is an element of the ini-
tial algebra of two operations (in addition to “return” and “bind”):
the “sample” operation, which draws a value from a distribution;
and the “score” operation, which associates a probability with the
current execution. Initiality allows us to map a GraPPa model into
any monad — that is, into any well-defined computation seman-
tics — simply by giving interpretations for the two operations. A
theoretical benefit of this approach is that it allows us to define
a straightfoward semantics for GraPPa models as measures over
traces, which we discuss briefly below. As a practical benefit, ini-
tiality allows us to “run” a model in many different ways, by map-
ping to different monads, such as the state monad. This running is
how we define inference methods.

The key idea in the GraPPa design that allows it to express
where a model falls in the continuum between model expressive-
ness and specialization is that the type of a generative model is
parameterized by a Haskell constraint function, that expresses a set
of constraints on the distributions used in the model. This allows
the set of distributions used in a model to be encoded in its type.

In more detail, the GraPPa definition of generative models is
summarized in Figure 1. The first few lines define the notion of
distribution over a random variable. Line 2 starts by defining a
Haskell type family, or type-level function, Support, where intu-
itively Support d gives the type of the support of distributions of
type d. Lines 5 – 6 define the HasPDF typeclass. This captures the
constraint that a distribution type d has an associated probability
density function (PDF), by requiring there to be an associated func-
tion, density, that gives the density of a distribution at a point in the
support. Following standard convention, densities and probabilities
are represented in log-space, which is represented by the Haskell
type LogFloat. Lines 9 – 12 then show how to define one particu-
lar distribution type, Normal, with support type Double. A Normal

distribution over Doubles has a PDF, though we omit the definition
here for succinctness.

Lines 15 – 18 define the type ModelOp c a, which captures the
primitive operations that can be used in a model. These include
operations for sampling from a distribution and for incorporating a

1 −−Defines the support type of a distribution, i.e., the space it samples from
2 type family Support (d :: *) :: *
3
4 −−Defines a distribution as having an associated density function
5 class HasPDF d where
6 density :: d -> Support d -> LogFloat
7
8 −− The normal distribution; other distributions are similar. . .
9 data Normal = Normal Double Double

10 type instance Support Normal = Double
11 instance HasPDF Normal where
12 density (Normal mu sigma) r = . . .
13
14 −−Primitive operations in a model
15 data ModelOp (c :: * -> Constraint) a where
16 MOpSample :: c d => d ->
17 ModelOp c (Support d)
18 MOpScore :: LogFloat -> ModelOp c ()
19
20 −−Models are either done, or are an op followed by a continuation
21 data Model (c :: * -> Constraint) a where
22 ModelDone :: a -> Model c a
23 ModelStep :: ModelOp c b ->
24 (b -> Model c a) -> Model c a
25
26 −−Apply an operation in a model
27 appOp :: ModelOp c a -> Model c a
28 appOp op = ModelStep op return

Figure 1. GraPPa Generative Models (Simplified Version)

probability score into a computation. The type a associated a return
type with an operation: sampling operations have the support type
of the supplied distribution as their type, while scoring operations
have unit type.

The key novelty in the design of GraPPa is the c argument in
the ModelOp type. This has kind * -> Constraint, meaning that
c d for any type d is a constraint on d. This c argument is used to
constrain the types of the distributions used for sampling; e.g., the
type ModelOp HasPDF a can only sample from distributions with
associated PDFs.

Lines 11 – 17 define the notion of generative model used in
GraPPa. This is a version of the free monad, where every computa-
tion is either done, with a final value, or it is an intermediate step,
with a ModelOp that is waiting to be interpreted and a continuation
that will determine the next Model depending on the value given for
that ModelOp. These options are represented with the ModelDone and
ModelStep constructors, respectively. Note that, for efficiency rea-
sons, GraPPa actually uses an optimized, continuation-based ver-
sion of the free monad (Kmett 2011), which we ignore here for
simplicity. Although we omit the Monad instance for how to com-
pose Models, lines 27 – 28 show how to apply ModelOps; this is
standard in the free monad literature.

One way to view an element of the Model type is as a DFA,
where a ModelDone represents a terminal state and a ModelStep

represents a non-terminal state that will transition to a new state
depending on the value of the given ModelOp. Each (finite) run of
this DFA is a trace of successive values for the “sample” opera-
tions, along with a final value for the terminal state. Assuming that
each of the distributions in a “sample” operation associates a well-
defined probability to each element of its support, whether or not
that probability is computable with a HasPDF instance, each such
trace can also be associated with a probability, by multiplying these
associated probabilities of the “sample” operations along with the
probabilities given by the “score” operations. Technically speak-
ing, this defines a measure and not a probability distribution, since
score operations could make the total probability not sum to 1.

1 −− The type of a random data or parameter variable of type a
2 data Var a = VData a | VParam
3
4 −−Use the value of a variable drawn from a given distribution
5 use :: (c d, HasPDF d) => Var (Support d) ->
6 d -> Model c (Support d)
7 use(VData x) d = appOp (MOpScore (density d x))
8 use VParam d = appOp (MOpSample d)
9

10 −−A model with two variables, where first affects the second’s distribution
11 simpleModel :: (c Normal , c Uniform) =>
12 Var Double -> Var Double ->
13 Model c (Double , Double)
14 simpleModel mu_v x_v =
15 do mu <- use mu_v (Uniform (-100) 100)
16 x <- use x_v (Normal mu 10)
17 return (mu,x)

Figure 2. Writing Models in GraPPa

3. The Expressivity vs. Efficiency Continuum
Figure 2 shows how we write models in GraPPa. The random
variables of a model are made explicit with the Var type (line
2), which are either data variables, with an associated value that
has been observed, or parameter variables, which represent hidden
values in a model that have not been observed. To use a variable in
a model, the use function (lines 5 – 8) is called with the variable
and the distribution it is associated with; parameter variables are
sampled from the distribution and data variables have their values
scored against the distribution. This approach allows users to write
a single model and use it in multiple different ways, supplying
or omitting values for the random variables of the model. This is
useful, for example, in data imputation, where some of the data is
missing and must be inferred.

Lines 11 – 17 use this approach to define a simple model, with
two variables, mu_v, drawn from a uniform distribution between
-100 and 100, and x_v, drawn from a normal distribution around
the value of mu_v. The type of this model leaves the constraint
function, c, abstract. The only requirements on c, expressed to the
left of the Haskell => arrow, are that it is satisfied by the Normal

and Uniform distribution types. This intuitively puts a lower bound
on the set of distributions used in the Model. This approach is
compositional, because the Haskell type-checker knows how to
combine constraints written in this way.

Inference methods are then specified with types that choose
specific constraint functions for c, thereby giving an upper bound
on the distributions. For instance, forward sampling methods have
input type Model (SampleableIn m) a, where SampleableIn m d

expresses that distribution type d can be sampled from in monad
m. More efficient inference methods, like hill climbing algorithms,
might require distributions to be Continuous, or isomorphic to the
real line.

References
B. Carpenter, A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Betancourt,

M. A. Brubaker, J. Guo, P. Li, and A. Riddell. Stan: A probabilistic
programming language. Journal of Statistical Software, 2016.

E. Kmett. Free monads for less.
http://comonad.com/reader/2011/free-monads-for-less/,
2011.

A. Ścibior, Z. Ghahramani, and A. D. Gordon. Practical probabilistic
programming with monads. In Haskell, 2015.

F. Wood, J. W. van de Meent, and V. Mansinghka. A new approach to
probabilistic programming inference. In AISTATS, 2014.

